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ON THE INVERSE OPTIMAI, CONTROL PROBLEM
IN MANUAL CONTROIL SYSTEMSL

R. W. Obermayer and F, A. Muckler
The Bunker-Ramo Corporation
Canoga Park, California

SUMMARY

Optimal control theory is briefly reviewed with particular emphasis on
the inverse problem of finding the conditions under which a given system is
optimum. A specific method for computing the optimal performance weighting
coefficients is developed. While the data are inconclusive, application of
this technique to some of the mathematical models of manusl control systems
existing in the literature reveal some intractability with theory, but with
the suggestion that some observed trends in the data are consistent with a
hypothesis of optimalizing human operator behavior. Some implications to
manual control theory and experimental methodology are derived.

INTRODUCTION

Within recent years developments in modern control theory have given
new insights into many tenacious control problems. In particular, modern
optimal control theory has made inrocads into the problems of control synthe-
sis, allowing the determination of a control law which will optimize on some
predetermined basis.

With regard to manual control problems and theory, the ability to
synthesize optimal control requirements gives a specification of the functions
for optimal performance which may be allocated between man and machine, new
and different display and control tasks are suggested, the insights into the
manual control tasks provided suggest more comprehensive performance measure-
ment, and theoretical implications are made with regard to appropriate mathe-
matical models and strategies effective to the control task (cf. Obermayer

1 This work was supported in part under National Aeronautics and
Space Administration Contract NASw-869, Office of Advanced Research and
Technology, Electronics and Control, Control and Stabilization Division.



and Muckler, 1964). Another option provided by modern optimal control theory
is to work the optimization problem backwards: assume that a given control is
optimum and attempt to compute the manner in which it may be optimum.

The latter approach, that of the inverse optimal control problem, is the
topic of this report. Based on the assumption that the human operator attempts
to optimize during manual control, it is believed that applications of the
inverse optimal control techniques may shed some light on the strategies and
techniques employed. In the following, therefore, the inverse optimal control
problem, and conditions necessary for optimality, are explored and a technique
developed to compute the nature of a performance index which is optimized by
human control functions. Some of the mathematical models existing in the
literature are used to compute the nature of performance indices optimized, and
the results provide the basis for critical discussion of manual control theory
and experimental methodology.

THE INVERSE OPTIMAL CONTROL PROBLEM

Much of modern optimal control theory takes as its starting point that
an index of performance is specified so that optimality can be defined as
minimizing the given performance index. Herein lies a fundamental problem,
since quite frequently -- if not always -- defining what one means by optimal
performance is very difficult. Given a method for achieving rapid solutions,
such as the Automatic Synthesis Program (Xalman and Englar, 1963) which pro-
vides the optimal control law and transient response once certain performance
index matrices are specified, a number of system designers have used a cut-and-
try procedure, trying different performance indices until something judged
"good" results. As Reynolds and Rynaski (1963) report, "Thus the performance
index is used as a performance index -- that is, we choose elements of the H
and Q matrices to minimize what we would like to minimize from physical con-
siderations -- and it is used as a ‘cut-and-try' parameter. The real criterion
of performance is judgment applied during the 'cut-and-try' procedure.” In
short, an obligation is transferred to the system engineer to mathematically
define optimality, an obligation he can only imperfectly fulfill.

Further, the required form for the performance index is that of a scalar,
a one-dimensional entity (Zadeh, 1958; Zadeh, 1963). This hardly seems appro-
priate to express the usual complex multi-facetted descriptions of performance
related to even quite simple systems. It is therefore argued that the choice
of the performance index to be optimized is arbitrary and subjective, and that



it may be pointless to devote too much effort to finding a control law which
is the best in some narrow, individualistic sense.

All this suggests that it may be worthwhile to change methodology. Instead
of asking for the control law corresponding to a given performence index, it
may be better to seek the performance criteria for which a given control law
is-optimal., This problem has come to be called the inverse optimal control
problem; it 1s analogous to the older problem of the inverse problem of the
calculus of variations.

Conditions for Optimality

The scope of the inverse optimal control problem requires some restriction
to avoid trivigal cases. For example, 1t is possible to define loss functions
under which any control system may be optimal; in particular through the
proper choice of loss functions as unstable system may be termed "optimum".
Therefore, if we are to seek out the ways a given system may be optimal, it
will be expeditious to exclude definitions of optimality which would be
universally considered undesirable or impractical by control engineers.

For the purpose of narrowing the allowable definitions of optimality,
three control system attributes should be considered: controllability,
observability, and stability. Stability, of course, is a long-recognized
desirable system property and is generally the first system consideration;
controllability and observability are properties first defined by Kalman (1960)
and which are required as necessary conditions for the proof of a number of
critical control system theorems.

Controllability. The literature distinguishes between various types of
controllability, and offers a number of convenient tests for controllability
(Kreindler and Sarachik, 1964; Weiss and Kalman, 1964; Stubberud, 1963; Ho,
1962). However, for present purposes, it will suffice to define a plant as
completely controllable if for any given initial state a control input exists
which will transfer the plant to any other final state in a finite length of
time.

A simple example of an uncontrollable plant is shown in Figure 1. It may
be seen that in state space the plant can only be controlled along the line
X] = Xy Kreindler and Sarachik (1964) point out that the lack of controll-
ability in this case may not be critical if one is only interested in the

2 In a recent paper by Kalman (1964) the above objections are pointed out,

but from a scientific point of view, study of the inverse optimal control
problem is considered of value since: '"We might thereby discover general
properties shared by all optimal control laws. We might be able to separate
control laws which are optimal in any sense'.



controllability of the output, and distinguish between state-controllability
and output-controllability. These are independent properties with neither
implying the other. As a further example, the given figure would demonstrate
output-uncontrollability if the output were defined as the difference between
Xy and x2; in this case no output variation of any kind would be possible.

Ho (1962) gives necessary and sufficient conditions for controllability
which are helpful in gleaning some insight into the meaning of controllability.

X1 / X,

- /

X X

Figure 1. Plant Not Completely Controllable

Restricting attention to single-input time-invariant linear systems, he points
out that controllability is independent of coordinate transformations, allow-
ing consideration of the Jordan Canonical Form of the linear system (Figure 2).
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Referring to the block diagram (Figure 2), condition 1 points out that if, for
;example, A , = A - & situation like the previous examples of uncontrollability
would result, and if condition 2 is not satisfied then we have simply lost
direct or indirect control of one or more integrators. )

Observability. The concept of observability is associated with the
measureability of the state of the plant. In general, our knowledge of the
state of a system is based on observations of the output, and if all state
variables affect the output (i.e., there is no motion in state space which
leaves the output unaffected) the output is completely observeble. Similarly,
if control feedback is affected by any change in system state, the control law
may be called completely observable.

Incomplete observability implies that current and past states may be
only known statistically, and occurs as a result of inaccurate measuring
instruments or restricted access to measuring points.

Observability is therefore an ideal and can never be attained in prac-
tice. To the extent that probability distributions of past and present states
can be constructed, optimal control may be possible with partial observability
(cf., Florentin, 1962) as one may combine sequential observations and decisions
according to Wald's statistical decision theory. Ostensibly inaccuracies of
measurement may be compensated through such procedures, but the total ignorance
of some system states is bound to be more serious. If the control law is not
completely observable, degenerate cases of optimal control may result,

Stability. A very basic attribute of a control system is the concept
stability: If the system is perturbed from its equilibrium, all resulting
motions will remain in a small neighborhood of the equilibrium point. A more
refined form of this motion is asymptotic stability which requires that the
resulting motion converge to the equilibrium point. Clearly, if a control
system had neither of these attributes (i.e. was unstable), the system motions
would become increasingly large and hence disastrous.

A most powerful tool for the determination of system stability is pro-
vided by the second method of Lyapunov (LaSalle and Lefschetz, 1961). Stabil-
ity can be verified without solving the system equations if one can find a
suitable Lyapunov function. V (x) is a Lyapunov function if V (x) is positive
definite;3 if V (x) is negative definite one may assert that the equilibrium
point is asymptotically stable.

3 A scalar function V (x) is said to be positive definite if V (0) = 0,
and V (x)#0 for x # 0, If -V (x) is pos. definite, V (x) is then said to
be negative definite.



Lyapunov stability theory is of interest in considering the relation
between optimal control systems and stable control systems, since the perfor-
mance index defining optimal control may be a Lyapunov function. Under the
condition that the performance index is a Lyapunov function it is guaranteed
that the optimal control will be asymptotically stable. If the performance
index for a free, linear, stationary system is defined as the integrated erroz
criterion:

v = f (0 at

such that V (x) is finite in a neighborhood of the origin, and p (x) is posi-
tive definite, then V (x) is a Lyapunov function and the origin is as asymp-
totically stable equilibrium point (Kalman, 1960).

Constraints on the inverse optimal control problem. It may be seen from
the preceding that if one uses a definition of optimality which insists on
complete controllability, complete observability, and asysmptotic stability
there is little danger of labelling trivial and degenerate cases as optimal.

To further concentrate attention on a class of problems of great inter-
est in control engineering, it will be well to follow the lead of Kalman
(1964) who makes the following assumptions: (1) The plant is described by
linear differential equations with constant coefficients, (2) the control law
is linear and constant, (3) all state variables are directly measureable, (4)
quadratic performance indices are used, and (5) there is only one control
variable.

Under the above five conditions, and the additional conditions of (6)
complete observability. and (7) complete controllability, Kalman (1964) shows
that the optimal control law must be stable, and further, a control law is
optimal if and only if component variations in the forward loop are diminished
by the addition of feedback.

It is evident that systems which are termed optimal in the context of
these seven requirements are elements of a set which would be termed excellent
by control system engineers. It is believed therefore that these are reason-
able constraints on the concept of optimality for the scope of constant coef-
ficient linear systems indicated, and such linear systems which do not satisfy
these conditions will be branded inoptimal. These seven requirements shall be
assumed in this paper. -

The above assumptions and conditions are very restrictive, excluding
many interesting problems, but unfortunately current theory does not allow
one to consider more sophisticated cases. Certainly performance indices other
than quadratic forms are of interest. The condition of complete obser-
vability, with all state variables measurable, is a practical problem since



this frequently .implies the measurement of many high-order derivatives. If
some control variables cannot be measured directly, optimal control theory
requires that the missing state variables be estimated from the known ones.
This may be done using Wiener filtering techniques and results in the inclu-
sion of dynamical elements as part of the controller.

With regard to the restriction of quadratic performance indices, it
should be pointed out that if a quadratic performance index is minimized by a
particular control, performance indices of other forms may also be minimized.
For example, Sherman (1958) showed that with Gaussian signals, and some non-
gaussian signals, that a Wiener predictor satisfying a mean square error
criterion also satisfied any even monotonically increasing error criteria.
Brown (1962) extended these results to asymmetric non-mean-square error
criteria, as well as to the case of nonstationary Gaussian inputs.

Application to Manual Control Systems

Much has been said about the human controller tending to perform in an
"optimal" fashion znd in an adaptive manner (i.e., perform optimally in a
number of different control environments). For example, McRuer and Krendel
(1957) comment, "Although we would be hard put to specify the precise optimum
toward which the subject strives, we can assert that the human operator is
both "adaptive" (within a relatively fixed form), and "optimalizing" (to some
internal criterion). 1In fact, the human operator is the very prototype of an
adaptive, optimalizing servo system."

It is interesting to pose the question: If the human operator is per-
forming optimally, what performance criteria are the basis for his opti-
mization? In terms of the inverse optimal control problem, this is equivalent
to stating: Given a manual control system, under what performance criteria is
it optimal?

While extensive congiderations have been given to optimal manual control
systems (e.g., Birmingham and Taylor, 1954; Frost, 1962), little study has
been given to the mode of human operator optimization.

Roig's investigation. One approach to the study of human optimalizing
behavior is to compare human performance in a given task against a device
which is optimal in some known manner. Roig (1962) used this approach in com-
paring the performance of a human operator against a linear controller which
minimized rms error. The task was one-dimension compensatory tracking, with
two types of stochastic nongaussian inputs, and with controlled element dy-
namics of approximately a rate control with large delay. The optimal linear
control was known for various amounts of constraint on the controller output.




In comparison to these it appeared that the human operator performed about as
well as a highly constrained optimal linear controller. However, while the
results were suggestive, no definitive conclusions could be made about the
mode of human optimalizing behavior.. In particular while similarities
between human and optimal controller overall performance were noted, differ-
ences were apparent in the time history records.

leonard's study. Another approach to the study of optimalizing behavior
is to vary the parameters of a mathematical description of the human operator
to determine if other combinations of parameters could produce superior per-
formance, Using a brute force computer technique, Leonard (1960) evaluated
two cases of human operator mathematical models against a minimum mean square
error criterion. One case was the mathematical models fitted by Elkind using
rectangular spectra of various cut-off frequencies and no controlled element
dynamics, and the other case was the mathematical model fitted by the Franklin
Institute using the dynamics of the F-80 aircraft in simulated tail-chase
conditions. In each case the parameters of the math model were varied and
the mean square error score was computed until the minimum mean square error
condition was found. In comparing against the published experimental results
a similarity was noted between experimental and calculated scores except for
the model corresponding to aileron control of the F-80, however, it was
observed that the subject's technique in this task was to use loose control of
the ailerons and to stress pitch control. Leonard concluded that "the trained
human often adopts dynamics that nearly minimize the mean square tracking
error (subject to the human's inherent limitations)."

Potential for gaining insight into human behavior. Instructions aside,
it may be observed that the subjects of tracking experimentation bring with
them a set of strategies and techniques which they apply to the task. In
some cases these may be highly individualistic traits, in other cases, there
may be a small number of techniques being employed by different subjects. It
is possible that there are different methods of achieving the same goals, but
on the other hand, different strategies may indicate attempts at achieving
different goals. If it were possible to compute the performance indices
optimized in a given manual control system, it may then be possible to make
some inferences about the task and the strategies employed. Clearly infor-
mation of this sort is essential to an understanding of the manual control
task and the related human operator behavior. It is this that makes attrac-
tive the potential modern optimal control theory offers for direct solution
of the inverse control problem.

Use of math models. In order to apply existing modern control theory
to manual control, it is necessary to have a complete mathematical description
of the manual control system. Fortunately, some mathematical description of
manual control exist, known variously as human transfer functions, deseribing
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functions, and mimicks., Of course, the other portions of the control system
are usually mathematically described. Taking the available data for mathe-
matical human operator models, one may form a mathematical description of a
manual control system in precisely the same form as might be applied to some
automatic control system. Available tools of the inverse optimal control
problem might, therefore, be applied to this situation as well as any other.

While some elegant and complex models have been developed incorporating
nonlinear aspects of human response, the only models for which a significant
amount of data exists are in terms of linear differential equations with con-
stant coefficients. The following form by McRuer and Krendel '(1957) is by far
the most tested:

cs)_Ke-sT" 1+ TL S
g(s) p (1 + T, s) (T + TI‘§7

It will be noted that this model contains a pure time delay, presumably to
account for the reaction time lag of the human operator. The form shown is
simplified, more frequently than not, by reducing the number of constants in
the numerator or the number of terms in the denominator whenever these terms
are not deemed necessary to obtain a good fit to the original human operator
responses. A variation of the linear model used by Adams (1963) is:

o(s) Cy (s + 02)

G(S) ~

(s + A)°

The mathematical models of the human operator are ordinarily either
measured with no system dynamics at all, or with simple linear dynamics.
Except for the time-delay term, then, the composite system of system dynamics
and human operator model 1s describable as a simple linear system. In
addition, the models of the human operator are measured with the operator only
displayed error information; in such a case, the human operator is presumed
to be responding to the instantaneous error and without knowledge of the future
nature of the forcing function input. This situation is similar to that de-
fined as "regulator" control where control is applied to nullify the immediate
input; and without the qualifications for "servomechanism" control, where
control is applied to match the system output to some desired time-history
(e.g., that of a pursued target).

A Technique Tor Calculation

Kalman's linear solution. While modern control theory is deeply in-
volved with nonlinear techniques, it still remains that nonlinear techniques

11



are not easily generalized and that the most powerful, general statements can
be -made with linear systems. It is not surprising then that Kalman's

solution for optimal linear systems is quite easily stated and is very specific
about the nature of the optimal control law for a linear system.

Kalman's solution applies to linear systems of any order (with possibly
time-variable coefficients) where the performance index is expressed in
terms of quadratic forms (quadratic loss functions). With a quadratic form,
the terms are weighted cross-products and squares of the state variables; e.g.:

xTgx =[% x:] Qi1 :] QL X, + QL2 X))
] B P _-_I [-Xz] [ I:le XT + Q22 X3)

= QL (%)% + 2q12 (X X,) + @2 (xg)

Expressed in matrix notation the system equations and the performance index
take the following form:

X=A(t) X+C(t) u

%XT(tf)SX(tf)+%ftf [XTQX+UTR[a at

o}

J

I

Here, x is the state vector, u the control vector, J the scalar performance
index, and the others are matrices of constants (possibly time-variable).
Kalman requires thematrices S, Q, R to be symmetric, R must have an inverse,
‘and the quantity in brackets must be positive definite. The performance index
is composed of the weighting of the state at terminal time (tg), the time-
history of the state variables during the intermediate trajectory, and the
time-history of the use of control; the relative weighting of each of these
factors is determined by the matrices, S, Q and R respectively.

For any system of this quite general form, Kalman asserts that the
optimal control law is a linear feedback of the state vector.

U = (-rYcTp)x

12



Here the matrix P(t) satisfies a matrix Riccati differential equation:

T

P = PGR-lGTP -PA -A"P -Q

P (tf) =8
Inverting Kalman's technique. There are a number of characteristics of

the manual control tasks for which mathematical models are available, which
permit working Kalman's technique backwards.

1. The human operators are tracking continuously throughout an experi-
mental trial without giving any particular consideration for conditions ter-
minating the trial. They are not trying to achieve any particular state at
the end of the trial (at least they are given no instructions to this effect).
This permits matrix S to be set to zero.

2, The control law is specified as a constant relstion (since the human
operator model has constant coefficients): U = -KX. Under these conditions,
the result is given by the steady state,K solution of the Riccati matrix differ-
ential equation. Under this condition P = O.

Kalman's solution, in the form shown here, is only applicable if the
manual control task corresponds to the regulator problem. An explicit non-
trivial result for the servomechanism problem is not currently possible.

With the above provisions, one is left with only the task of solving for
performance matrices R and Q, and the Ricatti differential equations becomes
an algebraic equation (P = 0), For a given constant control system, the con-
trol law is knownj if the feedback gains are inserted in the above equations
one may then solve a system of simultaneous algebraic equations for the un-
known elements of the performance matrices. The details of this calculation
procedure are given in the Appendix; however it should be pointed out here
that it is not possible to write a sufficient number of equations to solve
for all unknown elements of the performance matrices. It is necessary to
normalize with respect to the weighting on the control input (R = 1), and
even then is only possible to solve for n elements of the Q matrix (where n
is the order of the total system). In the following this means that the Q
matrix weighting the state variables takes on the following form:

o &
Q, - - O
o Q, .
2
Q = 2
o . . oa_
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While other variations may be reasonable, this selection weights only the
squares of the state variables, assuming no weighting of cross-products of the
state variables (i.e., no requirement that the state variables are correlated).

An example. While the calculation procedure is explained fully in the
Appendix, the following example will serve to suggest the general procedure and
to point up the assumptions involved in applying the technique.

One of the simpler models used to describe human tracking behavior is
the following:

EB (Pilot response)
€ (Displayed system error) ~

KJ_ o~ S T
Tl + 1

4
To apply the calculation procedure the lag term, e_s, is ignored, assuming
that this portion of the response is inadvertent and not a part of an attempt
of the human operator to track in an optimal fashion.

1. For position control tracking (no system dynamics) the following
block diagram results:

Input

! )/5
TlS + 1 ﬂ\~

Figure 3. Manual Control System block diagram

2. IEquivalently, this diagram may be shown in two parts (after utilizing
block diagram algebra), corresponding to the "control” and to the "plant”.

1k



Plant

Control U 1 X ( )
S+A

K = Kl/TI A = l/TI

Figure 4. Manipulation of Manual Control System
block diagram

For a higher order system, a partial fraction expansion is found, allowing a
similar block diagram with a number of first-order systems in parallel.

2. Here, the system equations are:
i = -aX + U = Ax + GU
where A = -a; G = 1
The control law is a constant relation:
U= -Kx
Also, from Kalman's result:

U= -R'lGTPx; here R = R°T = 1; G = ol =1

15



L4, These results may be substituted in the Riccati equation (setting

T

= PG(R'lGTP) -PA -A"P - Q

g .
il
o
!

K2 + Ka + Ka -Q

@)
n

5. One may then solve for the only remaining variable, the performance
weighting Q:

K (K+2a)

2
1

In this case it may be seen that constant Q corresponds approximately (for K
>>2) to a constant gain-bandwidth criterion. If the human operator were to
track with a consistent basis for optimization, we would then expect that
mathematical models corresponding to consistent optimalizing behavior would
yield a constant gain-bandwidth product. This is precisely the observation
made by Elkind and Forgie (1959) for mathematical models with a variety of
rectangular input spectra.

Q

(k% + 2)) / (T)°

A number of assumptions must be made in order to apply this technigue to
the calculation of optimal performance indices using existing human operator
models, For convenience these may be listed as follows:

1. Only quadratic performance indices are considered.

2. R =1, i,e., the results are normalized with respect to the weighting
of the use of control.

3. The off-diagonal terms of the quadratic performance matrix are all
zero,

4, The mathematical model of human tracking must be linear, the delay
term is ignored, and a partial-fraction expansion must exist (i.e. no multiple
roots, a condition imposed by the requirement for complete controllability).

5. Control is defined in terms cf the optimal regulator problem.

16



A COMPUTER INVESTIGATION

Procedure

To investigate the suitability of inverse optimal control techniques to
the study of human tracking behavior, the inverse technique suggested by
Kalman's solution was programmed for a high-speed digital computer. The basic
approach was to use existing mathematical descriptions of the human operator
to achieve a mathematical description of a given total manual control system;
through digital computer computation an optimal performance index correspond-
ing to each manual control system was derived. The form of the performance
index thus achieved was the performance index which would be minimized by the
given manual control system.

The technique outlined in the previous section produces two compu-
tational problems: first, for a given control system, a system of simultaneous
linear algebraic equations must be set up, and then the system of equations
must be solved for the coefficients of the loss functions. Correspondingly two
basic programs were written in the FORTRAN computing language, with slight
changes necessary for different system dynamics. The linear algebraic equation
solved is (see Appendix):

0 = PGK -PA -ATP - TTqT

Here, P and q are the solutions of the Riccati equations and the loss function
coefficients, respectively, and the remaining terms of the above equations

are constants determined by the system parameters. The solution then is in
terms of the symmetrical nxn P matrix and the diagonal nxn q matrix; for present
purposes the P matrix is of no direct interest. The first digital computer
program then consisted of the straightforward task of calculating the constants
of the above set of linear equations, and the second program was a routine for
computing the matrix inverse and solving simultaneous linear algebraic equations.

The data were taken from McRuer and Krendel (1957) (also in Senders, 1959,
PP %-4) and Adams (1963). However, in each case it was not possible to use the
data exactly as presented. In the case of the McRuer-Krendel data (i.e. Russell,
Franklin Institute and Flkind data) a pure time delay is included in the human
operator model (an exponential term in Laplace transform notation). The time
delay term is not consistent with the finite state model assumed by the inverse
optimal computational technique. The lag term was therefore ignored for com-
puter computation (another approach would be to use a Padé approximation for
the lag term).

In the case of Adams' data, the model incorporates equal roots in the
denominator which yields an ambiguous partial fraction expansion and which

17



corresponds to a plant which is not completely controllable, The course of
action taken here was to approximate Adams' model with a controllable form
with distinet roots. The computer was set up using Adams' parameters, but
instead of using the double root a, distinct roots of a + d were used; a
number of runs were made with decreasing d until 4 = O. 001 to assure that the
solutions were well-behaved., In all cases a well-behaved convergence was
observed with variation occurring only in the high order significant digits.

Results

The results of the digital computer solutions are shown in Tables 1, 2
and 3. The number of state variables and hence the order of Q depends upon
the order of the total man—maﬁhine system (human operator dynamical model +
controlled element dynamics).

It will be noted in some cases Q contains negative terms, and there is
little consistency in these data. :

Comments

Small-sample results. Before any extensive discussion based on the
results presented here, it should be pointed out that relatively little data
are presented here, Very few data points are available for each condition,
and only the data of a few total subjects are considered - generally only one
subject for each condition. There is then little one can say about trends, or
lack of trends, and about apparent variability. This investigation is quite
exploratory.

The transfer function data used here are derived by several investi-
gators. A transfer function form was adopted by each investigator which in
his judgment produced a good fit to the empirical data. It would be under-
standable if differences in form of fitted functions and procedures varied with
investigator,

Inoptimal results. A number of the manual control system conditions
considered lead to a calculation of negative performance indices. Since this
indicates a weighting of state variables errors so that increased error is
taken as something desirable, one might therefore conclude that these manual
control systems represent inoptimal conditions. However, there are various
possible interpretations.

. Therefore, Q = (Ql1l), or Q = (Ql1l Q22), or Q@ = (Ql1l Q22 Q33), for total
system dynamics of first, second and third order, respectively.

18



POSITION CONTROL:

TABLE 1

FIRST ORDER SYSTEM ELKIND'S DATA

COND. K l/TI Q
R .96 2.113 3.65 115.7
R1.6 .9333 3.77 38.9
R2.b . 7079 1.885 6.82
F1 3.350 1.13 22.9
F2 17.78 0.314 346,
F3 Lk, 67 0.1885 h.3
Bl 2.818 4,78 311.
B2 1.189 5.03 96.1
B2 0.8912 12.6 Lo9.
BL 0.9660 12.6 456,
B5 3.589 1.88 71..0
B6 7.674 1.00 4.1
B9 1.0khk7 12.6 507.
BlIOo | —---- 2.82 | aeea-
TABLE 2
SECOND AND THIRD ORDER SYSTEMS
ot k | Yo | Yo, Mo, Q11 Q22 Q33
100 | .04 1.5 .5 |+ 36.720 +  168.96
Franklin: Lol .11 .55 [2.0 |+ 420.84 + 153,45
1.5 2 11.0 |3.0 | + 25.410 + 19.250
53.09 22 1.885 + 503.14 - L4 oko
37.58 .31h 6.22 +  567h4.3 - 146.80
Elkind: 13.34 .785 | 12.3 + 19076.7 -  257.60
: 5.623 | 1.73 30.3 117813. - 589,60
14 .45 .83 17.8 + 58301. - 452,60
2.818 | 3.14 6.28 + 5279, - 1il.1k
17.7 0.1 0.681 + 3.504k9 | + 9.0045
Russell: 7.55 | 0.13 25 0.9 | + 3053.6 + 6158.1 - 109.2
10. 3 14 2 +  8467.2 + 2688.0 - 84,000
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TABIE 3
2/S DYNAMICS-ADAM'S DATA

¢ s A= %, %o 933
32.2 2.27 L, 54 +5345 .7 +1037.1 -64 401
23.1 3.03 5.0 +4902.5 + 288,88 -46,203

8.61 1.492 3.03 + 165.26 + T76.56k4 -17.220
10.22 2.324 3.45 + 564,69 + 20.004 -20,441
1Lk.02 0.571 2.0 + 64,151 + 24k, 70 -28.0k0
4.6 2.324 3.45 +3269.8 + 401.90 -kg.201
16.0 1.492 3.03 + 570.31L | + 260.52 -32.000

5.93 2.70 .o + 256.86 - 31.226 -11.860

Perhaps the clearest statement of the troublesome results is to say that
the calculation procedure used here was unable in some cases to point up the
manner in which certain systems are optimal. Some restrictions are placed on
the nature of optimal systems which may be at variance with the manual control
systems. For example, the performance index is assumed to be a quadratic form
since this was consistent with existing theoretical developments, but a system
which optimized on the absolute value of system error may appear inoptimal in
the light of these assumptions.

Additional state variables. The required number of state variables for
system description is equal to the order of the total dynamical system. It
will be noted that the manual control systems yielding negative results in-
corporate feedback of less than all state variables (determined by the number
of constants in the numerator of the transfer function).> These systems do not
satisfy Kalman's requirement for complete observability, and represent systems
in which control is not based on the full state vector. By Kalman's definition,
such systems are inoptimal.

There are two possibilities where such systems may be optimal, even by
Kalman's criteria: (1) the dynamical portion of the transfer function may in-
clude a prediction of the seemingly missing state variables, or (2) the

> Since u = Xx and R = [i] 5 XTQX + uTRu = XTQX+XTKTK X = XT(Q+KTK)X.

When the negative elements of Q correspond to the zero elements of K
(unobserved states), there is question of the positive definiteness of the per-
formance index, and hence asymptotic stability is not assured by Lyapunov's
theoremn,



precision of transfer function measurement was insufficient to determine human
operator response to all state variables (i.e., high-order derivatives of

system error). Of course, both explanations may simultaneously hold.

With regard to the first possible explanation, a quote from Kalman (1964)
should suffice: "These assumptions are of course highly restrictive. One
obtains a hierarcéhy of problems depending on the number of control variables
and the number of state variables which can be measured directly.

"If all state variables can be measured, the optimal controller does not
contain dynamical elements because the best control ‘action at any instant de-
pends only on the value of the state variables at that instant. But if some
control variables cannot be measured directly -- which happens very often in
practical problems -- optimal control theory requires that the missing state
variables be estimated from the known ones using Wiener filtering techniques.
The Wiener filter will contain dynamical elements which are to be regarded as
a part of the controller."

The technique for calculating optimal performance indices used in this investi-
gation makes no allowance for Wiener prediction of missing state variables,
nor is it apparent at this time how this could be accomplished.

The other possibility is that the human operators did depend on high-
order state variables for control, but that this was not apparent in deriving
a fit to his responses., To demonstrate this, an additional state variable was
considered for one transfer function (see Table L4). The weighting of the
additional state variable in the control law was varied until an optimal per-
formance index (in the sense of the assumed form) could be calculated. In the
case shown, a moderate weighting of the missing state variable could yield the
desired result without changing other transfer function constants., If the
altered transfer function form were used in fitting to the empirical data, all
constants would change, with possibly even a smaller weighting to the high-
order state variable sufficing.

TABLE L
ADDITTION OF NEW STATE VARIABLES

1/ Q

K Yo 2/ Ty, 11 22

TN

52.09 .22 1.885 L. 4o 505, 1 2,01
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DISCUSSION

Inverse Optimal Control Theory and Mathematical Models of
the Human Operator

The inverse optimal control theory is aimed at determining the manner in
which a given control system is best., To the extent that there is insight into
the goals applied to the manual control task, better descriptions of manual
control behavior will result.

In a more abstract sense, the theory of the inverse optimal control prob-
lem allows a set of numbers to be assigned to a given tracking trial -- the
coefficients of the loss functions which are optimized. Other sets of numbers
can be assigned to the same tracking trials which correspond to the coefficients
of mathematical models which f£fit the data. These sets of numbers are transfor-
mations of each other, and to the extent that the transformations are 1:1, they
are all equivalent. However, in general, the differing models are not entirely
equivalent to each other, and the loss functions optimized may correspond to
many variations of the measured models, That is, the differing models may fit
the data in different ways and in differing degrees, and it is possible that a
variety of model coefficients may correspond to optimization on the basis of
the same criteria in a variety of different circumstances,

As an example, it has been observed that the human operator may adapt
so that the measured linear model of his performance is different with dif-
ferent controlled element dynamics and gains. It is reasonable to hypothesize
that over a range of circumstances he may be attempting to optimize perfor-
mance on the same basis, necessitating that his behavior, and the corresponding
linear model, be different. It is therefore possible that a practice of
correlating mathematical models to the conditions under which they represent
optimal performance may form a basis for consolidating a range of models repre-
senting similar behavior. Although the evidence is not conclusive, Elkind's
result that over a variety of conditions performance tended to maintain an
approximately-constant gain-bandwidth product, is an encouraging sign of con-
stant optimalizing behavior.

Manual Control Experimental Methodology

While it mz2y be argued that differences in human operator response under
different conditions may indicate optimalizing behavior, it may also be argued
that differences in human operator response, particularly between subjects
given the same task, or sudden changes in a specific subject's response, may
represent optimalizing behavior, but with different bases for optimization.
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For the most part, there is little reason to suppose that existing data
are representative of consistent optimalizing behavior, since we do very little
to constrain the subject's basis for optimization. The instructions generally
imply some vague minimization of error, but as we have seen to adequately
specify optimal performance means indicating a weighting of the use of control,
the error and appropriate derivatives, i.e., the control and some complete set
of state variables, The appropriate method for conveying the desired opti-
mization process is obscure; however, it is clear that until our experimental
methodology is improved, we will be collecting data from various different
subjects doing various different tasks at their own whimsy.

The Tractability of Mathematical Models to Theory

It is of course essential as a first requirement that the input and out-
put of a given model accurately match the measured time histories. The ability
to mateh the given data is limited by the precision of measurement, and,
therefore, within the bounds of measurement accuracy some equivocation must
exist with regard to the model form and the magnitude of model coefficients.
It is also quite reasonable, if one cannot detect the difference at the input
and output of two models, one more complex than the other, to use the simpler
model. However, it is apparent from this study that one value of these models
is to permit theoretical analyses, and that these analyses may be hampered if
the model form is inappropriate. We may ask whether the time lag included in
many models is entirely justifiable, whether a model must incorporate equal
roots, or if the feedback of higher order state variables cannot be included
based on our maximum measurement capability. Thus, it is desirable that in
addition to providing a good fit to empirical results, that the form of the
model be consistent with theoretical requirements. (Another example of this
requirement, is that transfer functions fitted to partial frequency response
data, may require modification to provide stable response).

Model Goodness-of-fit

It is clear that even if we restrict attention to the accuracy of re-
producing the original input-output time histories, that a good fit should be
sought at several levels., If the concept of state is at all reasonable, it
should be apparent that a number of aspects of performance must be specified
to completely describe a given system. If a given model of human operator con-
trol is of higher order than the first degree, then requiring only a fit to
the error signal, such as a minimum mean squared error fit, is ignoring many
critical aspects of control behavior. While many methods have theoretical
foundations which require a given type fit, the efficacy of the model should be
checked by comparison against higher order state variables.
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Calculation of the Bases for Optimal Performance

The technique for calculating optimal loss coefficients used in this
study requires that the control system be linear, that control is based on a
feedback of the entire state variable, that performance is optimized on the
basis of quadratic loss functions and assumes a regulator control., Further,
as presented here, it is only possible to calculate the diagonal terms of the
weighting matrix. Clearly a more general technique would be desirable to de-
limit the full range of nontrivial performance indices which a given control
system may optimize. The only virtue of tne present technique is that it may
define in at least one way a given system is optimum, and in the case of manual
control system theory this may prove invaluable, Further testing with an ex-
tensive base of data is required to evaluate the worth of this and other fea-
sible techniques.
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APPENDIX
CALCULATION OF OPTIMAL LOSS FUNCTION COEFFICIENTS

1. Given the linear system

X
c; (s + 02) -
(s+A) ZS+‘.B$
2. Through the partial-fraction expansion,
¢, (s+c2) e K X,
STA S®BY ... - S + SiB + ... create the equivalent block diagram:
2t
S+A
J 1
S+B
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3. Here the state variables, Y, are apparent, and there exists a relation-

ship X = TY.

. ] B 7
Y, X X (t)
Y, X, X (%)

Y = X = =

Y X ) (4)

- n - b nJ - -

L, From the last block diagram, we may write directly

~ . T F - = —~
Yl -A Yl 1
Y -B Y 1

m. . U

Y \_/ v Y lJ

L n 4 L7 o

= AY + GU F-Yl T
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Since U = —R_lGTPY if the control is optimum, and U = -KY: K = R-lGTP

With P

0, the Riccati equation becomes

PGR™1GTP -PA -ATP -Q

R'lGTP

0

and substituting K

0 = PGK -PA -ATP -Q

In this equation, Q corresponds to the Y state variables and the per-
formance index

T
J=%f (vqy + v7) at

0

we wish to solve for g of the performance index:

T

J = %J/h (xTqx + U7) dt
0]

but since X = TY

XTqX = (TY)Tq (1Y) = YT(TTqT) Y = YTQY

-

C.oQ = TTqT
It remains to solve the simultaneous linear equations,
0 = PGK -PA -ATP -T'qT

for the loss coefficients q. ‘

NASA-Langley, 1965 CR~-208 2



